¹³C Spin–Lattice Relaxation Studies of Perfluoroalkanes

J. R. Lyerla, Jr.,¹ and David L. VanderHart*

Contribution from the National Bureau of Standards, Washington, D.C. 20234. Received July 28, 1975

Abstract: To obtain information on the rigidity of perfluoroalkanes in the liquid state, ${}^{13}C$ spin-lattice relaxation times (T_1) and ${}^{13}C_{-}{}^{19}F$ nuclear Overhauser enhancements (NOE) of individual carbon atoms in liquid $n-C_6F_{14}$, $n-C_7F_{16}$, and $n-C_8F_{18}$ have been measured at 39 °C. Analysis of the relaxation results indicates that the only internal motion occurring on the time scale of overall molecular reorientation is rotation of the CF₃ group. Comparison of these results with *n*-alkane relaxation data provides evidence for higher intramolecular rotational potential barriers in the perfluoroalkyl chain. In addition to the relaxation results chemical shifts and resonance assignments are reported for the three perfluoroalkanes as well as 1H-*n*- C_7F_{15} .

It is generally accepted that the polytetrafluoroethylene (PTFE) chain is less flexible and more extended than the polyethylene (PE) chain.^{2.3} However, calculations of the configurational characteristics of isolated perfluoro-*n*-al-kane chains indicate that the perfluoroalkyl chain is by no means rigid.³ Unfortunately, the lack of solvents for PTFE near room temperature has severely limited experimental attempts to obtain indications of chain flexibility and experiments on the characteristics of the molecular motion in the appropriate model compounds, the perfluoro-*n*-alkanes, are lacking.

Recently, carbon-13 spin-lattice relaxation times (T_1) (in the temperature range 30-40 °C) were used to study^{4,5} molecular motion in neat liquid *n*-alkanes thru $C_{20}H_{42}$. Analysis of the T_1 data yielded information on the overall and internal reorientational motion in these systems, thus providing qualitative information on the flexibility of an *n*alkane chain. Presuming that results on perfluoro-*n*-alkanes can be used to provide insight into the physical properties of PTFE much in the manner of *n*-alkanes and PE, we have measured ¹³C T_1 values for $C_n F_{2n+2}$ compounds in the liquid state in order to obtain a qualitative indication of the degree of chain motion in perfluoroalkyl chains. The results of a preliminary study on molecular mobility in $C_6 F_{14}$, $C_7 F_{16}$, and $C_8 F_{18}$ as assessed by ¹³C T_1 measurements are reported herein.

Results

In Figure 1 is shown the fluorine-decoupled ¹³C spectrum of perfluoroheptane. As in the corresponding n-alkane, each nonequivalent carbon gives rise to a ¹³C resonance line. A similar result is found for C_6F_{14} and C_8F_{18} . The chemical shift data and assignments for the three compounds are presented in Table I. (There is a paucity of data in the literature on ¹³C chemical shifts in fluoroalkanes;⁶ therefore, resonance assignments had to be made and the rationale for these assignments is given in the Experimental Section.) The constancy of the ¹³C chemical shifts indicates that parameterization of the fluoroalkane chemical shifts using schemes analogous to those employed for n-alkanes^{7,8} should be possible once a larger collection of data becomes available. Two notable differences in chemical shift behavior between the perfluoroalkanes and the n-alkanes are: (1) the apparent absence of a " γ effect" in the perfluoro compounds (CF₂ resonances appear at higher fields in an orderly way, the closer the CF_2 unit is to the CF_3 group), and (2) the observation that the CF₃ carbon is the least shielded carbon in the perfluoro-n-alkanes while the CH₃ carbon is the most shielded carbon in the n-alkanes.

In each of the three perfluoroalkanes ¹³C spin-lattice relaxation times (Table II) were determined for the resolved carbon lines from inversion-recovery (180- τ -90) Fourier transform spectra. Experiments were performed at 39 °C in order to facilitate comparison with n-alkane results. To complement the relaxation measurements, ¹³C {¹⁹F} nuclear Overhauser enhancements¹⁰ (NOE) were determined from integrated line intensities of continuous-decoupled and gated-decoupled spectra. In all cases, a maximum NOE (2.87 ± 0.3) was found indicating that the carbon relaxation in the perfluoroalkanes is dominated by the C-F heteronuclear dipolar mechanism and that rotational reorientation is such that the extreme narrowing condition is valid, i.e., $(\omega_{\rm C} + \omega_{\rm F})^2 \tau_{\rm r}^2 \ll 1$, where $\tau_{\rm r}$ is a reorientational correlation time and $\omega_{\rm C}$ and $\omega_{\rm F}$ are the respective Larmor frequencies. Under these conditions an effective rotational correlation time ($\tau_{\rm eff}$) for the vector connecting the directly bonded C and F atoms is given by4.11

$$\tau_{\rm eff} = r_{\rm CF}^6 / K T_1 N_{\rm F} \tag{1}$$

where r_{CF} is the internuclear distance, N_F is the number of attached fluorines, and K is a constant equal to 3.15×10^{-4} nm⁶ s⁻². Isotropic reorientation is also assumed in eq 1. Values of τ_{eff} for the three perfluoro compounds are listed in Table II.

Discussion

The link between molecular dynamics and measured τ_{eff} values is clearly established for the case of a spherical molecule, i.e., $\tau_{eff} = (6D)^{-1}$, where D is the rotational diffusion coefficient of the sphere. However, for a polymer chain a distribution of correlation times (τ_i) is required to describe the complex motion of a C-H or C-F vector¹² and the single τ_{eff} parameter must be viewed as a weighted average of these correlation times, i.e., $\tau_{eff} = \sum_i c_i \tau_i$, where the c_i are orientation-dependent coefficients.⁴ Rigorous interpretation of τ_{eff} requires a detailed model of chain motion. While such detailed models are unavailable, we will use the following simplied equation to interpret τ_{eff} :

$$\tau_{\rm eff}^{-1} = \tau_0^{-1} + \tau_i^{-1} \tag{2}$$

where τ_0^{-1} is the reorientation rate for the rigid molecule and τ_i^{-1} is the reorientation rate for internal motions. This equation was used successfully in the analysis of τ_{eff} data in a series of *n*-alkanes ranging from C₇H₁₆ to C₂₀H₄₂.⁴ In this model, reorientation of a C-H vector is separated into contributions from internal motions within the alkyl chain and overall motion of the molecule (considered rigid). The internal motions originate from conformational changes

Figure 1. Fluorine-decoupled 15.08 MHz ¹³C spectrum of perfluoro*n*-heptane at 39 °C. The spectrum is the result of 16 scans at a recycle time (*t*) of 100 s using a $(90-\tau)$ pulse sequence. Assignments of resonance lines are given above the individual peaks. Numbering of CF₂ resonance is explained in the Experimental Section.

Table I. ¹³C Chemical Shifts^{a,b} in Several Perfluoroalkanes at 39 °C

$\frac{\text{Compd}}{\text{C}_n\text{F}_{2n+2}}$	Carbon in chain				
	l, (n)	2, $(n-1)$	3, (n-2)	4. (<i>n</i> – 3)	
$C_{6}F_{14}$	118.1	109.4	111.1		
C ₇ F ₁₆	118.1	109.4	111.1	111.7	
C ₈ F ₁₈	118.1	109.4	111.2	111.8	

^{*a*} In ppm relative to external TMS, converted using δ_{TMS} (external) = δ_{CS_2} + 193.7. ^{*b*} Estimated error ±0.1 ppm.

and internal rotations within a conformation. These motions are largely determined by intramolecular potential barriers that are independent, to a first approximation, of chain length. On the other hand, the overall molecular motion is a function of both molecular weight and viscosity and is subject to chain-length dependent, intermolecular barriers.

The following systematic trends in the *n*-alkane data⁴ were noted: (1) τ_{eff} increased progressively for a carbon in a given chain position (C₁, C₂, etc.) as chain length increased, (consistent with a decrease in overall motion with molecular weight and viscosity); (2) τ_{eff} increased from chain ends toward the center for each alkane. As the chain length was increased, the fractional rate of increase in τ_{eff} was least at the chain ends (consistent with a greater degree of internal rotational freedom at chain ends). In fact, a detailed analysis of the τ_{eff} data also indicated that the internal reorientational modes were (within experimental error) independent of chain length.

It is the gradation in CH₂ carbon τ_{eff} values (trend 2 above) in a given *n*-alkane that provides direct evidence of the considerable flexibility of the *n*-alkane chain. Examination of the data in Table II reveals no such gradation in τ_{eff} values for the CF₂ carbons in the three perfluoroalkanes;

within experimental error all $CF_2 \tau_{eff}$ values in a given perfluoro compound are equal. This result suggests there are no significant conformational changes in the perfluoro compounds which have lifetimes comparable to or less than the compounds' rotational lifetime. Consistent with this conclusion are the T_1 values calculated for CF₂ carbons in C₆F₁₄ and C_7F_{16} , assuming models of rigid molecules undergoing rotational diffusion.¹⁴ For a rigid molecule undergoing isotropic reorientation, the Gierer-Wirtz¹⁵ modification (the so-called "micro-viscosity" correction) to the Stokes-Einstein equation for calculation of rotational diffusion constants gives rotational diffusion constants, ¹⁶ D, for C₆F₁₄ and C_7F_{16} of 3.2×10^{10} and 2.1×10^{10} s⁻¹. Calculation of $\tau_{\rm eff}$ values from the relation $\tau_{\rm eff} = \frac{1}{D}$ and using these D values along with eq 1 yields T_1 values of 19.6 and 12.8 s respectively for CF₂ carbons in C₆F₁₄ and C₇F₁₆, in excellent agreement with experimental T_1 values. If the compounds are treated as axially symmetric rigid ellipsoids (to account for shape anisotropy) undergoing rotational diffusion, the equations of Woessner¹⁷ can be used to calculate T_1 for CF₂ carbons. Using the geometry from a 157 helix (the presumed geometry for PTFE above 19 °C),¹⁸ T_1 values of 19.4 and 12.3 s are computed for C_6F_{14} and C_7F_{16} difluoromethylene carbons, respectively, again in reasonable agreement with the data.

In the *n*-alkanes,⁴ both internal and overall reorientation contributed to τ_{eff} , even when τ_{eff} was as short as 2 psec. As shown above, the results for CF₂ carbons are consistent with C-F reorientation rates given by $1/\tau_{eff} = 1/\tau_0$. Since overall reorientation rates $(1/\tau_0)$ are slower in a C_nF_{2n+2} compound relative to its C_nH_{2n+2} counterpart, it is clear that internal motion in the perfluoroalkyl chain is considerably slower than in the *n*-alkyl chain, i.e. intramolecular potential barriers are larger in C_nF_{2n+2} compounds. While these ¹³C relaxation results are experimental verification of the reduced flexibility of the perfluoroalkyl chain relative to the *n*-alkyl chain, semiquantitative estimates of the degree of internal reorientational motion obviously require ¹³C T_1 studies of C_nF_{2n+2} compounds with n > 8, i.e., compounds in which $1/\tau_0$ is sufficiently small that $1/\tau_i$ (see eq 2) would contribute significantly to the relaxation process.

In the case of a rigid molecule undergoing isotropic reorientation, the CF₃ carbon spin-lattice relaxation time should be $\frac{2}{3}$ that of a CF₂ carbon. In the three compounds studied, the ratio of CF₃/CF₂ T₁'s is nearly constant at 0.75 ± 0.03 rather than 0.67. This discrepancy, which is outside of experimental error, could be accounted for if the C-F bond in a CF₃ moiety were 0.0025 nm longer than in a CF₂ moiety ($r_{C-F} = 0.136$ nm) so as to reduce the relative efficiency of each C-F dipolar interaction in the CF₃ group. However, available evidence¹⁹ indicates the contrary may be true, i.e., the C-F bond in a CF₃ group may be 0.134 nm. (Values of τ_{eff} for the CF₃ carbon corresponding to both $r_{CF} = 0.134$ nm and $r_{CF} = 0.136$ nm are listed in Table II.) The CF₃ T₁ data might also be explained using the ellipsoidal model if the angle (θ) which the one unique C-F vector of a rigid

Table II. ¹³C Spin-Lattice Relaxation Times T_1^a and Calculated τ_{eff} Values^b for Three Perfluoroalkanes at 39 °C

	Carbon in chain				
Compd $C_n F_{2n+2}$	l, n $T_1(\tau_{\rm eff})$	2, $(n-1)$ $T_1(\tau_{eff})$	3, $(n-2)$ $T_1(\tau_{eff})$	4. $(n - 3)$ $T_1(\tau_{eff})$	$ au_{ m eff}^{c}$ (av)
$C_6F_{14} \\ C_7F_{16} \\ C_8F_{18}$	14.3 $(4.3.^{d} 4.7^{e})$ 9.6 $(6.4.^{d} 7.0^{e})$ 6.9 $(8.9.^{d} 9.7^{e})$	18.6 (5.4) 13.2 (7.6) 9.3 (10.8)	18.8 (5.3) 13.3 (7.5) 9.1 (11.0)	13.2 (7.6) 9.3 (10.8)	5.4° 7.6° 10.9°

^{*a*} In seconds; estimated error is $\pm 7\%$ of T_1 . ^{*b*} In picoseconds. ^{*c*} Average τ_{eff} for the CF₂ carbons. ^{*d*} τ_{eff} calculated using $r_{CF} = 0.134$ nm. ^{*e*} τ_{eff} calculated using $r_{CF} = 0.136$ nm.

CF₃ group makes with the long axis of the ellipse was such that this C-F interaction was less efficient than the other two interactions. However, in the 15₇ helical configuration, the unique C-F interaction ($\theta = 33^{\circ}12'$) is ca. 1.2 times more efficient than each of the other interactions ($\theta = 86^{\circ}48'$).

The only other explanation for the $CF_3 T_1$ data is that internal reorientation motion about the CF₃-CF₂ bond reduces the relaxation efficiency of the C-F interactions in the CF₃ moiety. In the *n*-alkanes,^{4,5} CH₃ internal reorientation was found to be reflected in the CH₃ τ_{eff} data. An estimate of this reorientation rate was obtained⁴ from the differences in $(\tau_{\rm eff})^{-1}$ values for the methyl carbon and the first methylene unit of the alkane chain. The value of this rate was found to be independent of chain length and directly related to the barrier to methyl rotation ($V_3 = 2.6-3.0$ kcal).²⁰ A similar analysis of the perfluoroalkane τ_{eff} data indicates that the rate ascribed to CF₃ internal reorientation is about the same in C_7F_{16} and C_8F_{18} but about twice as large in C_6F_{14} relative to the other two compounds. However, these differences in internal CF₃ reorientation rates are hardly significant, because the differences between τ_{eff}^{-1} (CF₃) and $\tau_{eff}^{-1}(CF_2)$ are only 10-20% and have a rather large uncertainty. (See Table II.) In addition, τ_{eff} depends on the choice of r_{CF} for the CF₃ and CF₂ groups.

Potential barriers for CF₃ bond rotation have been claimed to lie in the 3.5-4.2 kcal range.²¹ In assessing the importance of CF₃ internal reorientation in the perfluoroalkane data, it is necessary to determine whether motion subject to such a potential barrier would be expected to influence the CF₃ carbon relaxation rate. Woessner^{22,23} has treated the effects of internal motion on nuclear relaxation rates of CH₃ groups attached to an isotropically reorienting body or an axially symmetric rigid ellipsoid. Two models of methyl internal motion have been examined by Woessner: reorientation by a stochastic diffusion process and a jump process (between three equivalent positions differing by 120°). As the T_1 values of the CF₂ carbons of C₆F₁₄ calculated from an isotropic reorientation model and an axially symmetric rigid ellipse were in good agreement with experimental results, the T_1 of the CF₃ carbon in this compound was calculated from Woessner's equations using the parameters deduced from CF_2 T_1 's and an internal rotation rate derived from the rate of reorientation of a CF₃ rotor subjected to a barrier of 3.5 kcal.²⁴ For the isotropic model, the CF₃ T_1 values calculated for the stochastic and jump internal processes are 13.9 and 13.7 s, respectively. These values are to be compared with a calculated value of 13.1 s for a rigid CF₃ group and a measured value of 14.3 s. For the ellipsoidal model, the $CF_3 T_1$ values for the stochastic and jump processes are 13.1 and 12.7 s, respectively, while that for a rigid CF₃ moiety is 12.5 s. The general trend of the computed T_1 values indicates that inclusion of CF₃ internal reorientation (subject to a 3.5-kcal barrier) about the $CF_3-CF_2(1)$ bond can account for the observed CF_3 T_1 value in C₆F₁₄.²⁵ Indeed it seems to us that invoking internal CF₃ reorientation is the only way to resolve the differences between CF₃ and CF₂ τ_{eff} 's. However, the results of the calculations should not be viewed as quantitative measure of the rate of CF₃ internal reorientation in reducing the efficiency of the C-F interactions in the CF₃ group of perfluoroalkanes, since the calculations are subject to considerable assumption and were carried out for the case of greatest influence of the internal motion (i.e., lowest barrier).26

Conclusions

These experiments demonstrate that resonance lines corresponding to individual carbon sites can be resolved in the perfluoroalkanes and that ¹³C spin-lattice relaxation times can provide information on the chain dynamics of C-F vectors along the perfluoroalkane chain. Internal motion in the C_nF_{2n+2} chain is much reduced relative to its alkane counterpart, i.e., the C_nF_{2n+2} chain appears rigid on the time scale for overall motion, except for evidence of CF₃ reorientation about the CF₃-CF₂ bond. More quantitative estimates of degree of backbone motion in the perfluoroalkane chain will require experiments on longer chain compounds at various temperatures.

Experimental Section

The three perfluoroalkanes were obtained commercially and the ¹³C NMR spectra of C₆F₁₄ and C₇F₁₆ samples gave no indication of impurities. The C_8F_{18} sample contained possibly as high as 15% isomeric impurity. Samples were prepared by pipeting the compounds in 10-mm tubes, purging with dry nitrogen, and plugging (to prevent vortexing). Although the procedure of purging with dry nitrogen as opposed to vacuum degassing might be questioned on the basis of recent fluorocarbon T_1 measurements, 2^7 we believe that oxygen effects here are minimal in view of the full Overhauser effects measured. In all cases, the sample volume was restricted to 1.4 ml, ensuring that the entire sample would lie within the volume of the transmitter-receiver coil. Experiments were performed on a "home-built" pulse-Fourier transform spectrometer (described previously)^{28,29} operating at 15.08 MHz. Sample temperature was maintained at 39 °C using a commercial temperature controller. The probe and noise decoupler were tuned to decouple ¹⁹F at 56.4 MHz. All spectra were obtained with a spectral width of 1.5 kHz and 8K Fourier transformation (yielding a digital resolution of ~0.37 Hz).

Owing to the large separation in ¹⁹F chemical shifts of CF₃ vs. CF_2 groups (ca. 2200 Hz in C_7F_{16})³⁰ and the large magnitude of direct C-F couplings (ca. 260-290 Hz),³⁰ it proved impossible to obtain good fluorine decoupling over the entire range of perfluoroalkane ¹⁹F resonances with the instrument's presently available noise-decoupling capability. This necessitated performing two experiments on each compound to obtain the entire ¹³C spectrum. (The spectrum of C_7F_{16} in Figure 1 is a composite of two such experiments.) In one experiment the noise-decoupler was centered at about the fluoromethyl resonance ($\delta_F = -81.6$ ppm relative to CF₃COOH);³⁰ this gives rise to a singlet in the ¹³C spectrum at \sim 118 ppm (downfield from external TMS). In the second experiment, the decoupler was centered at about the midpoint of the CF2 ¹⁹F resonances (range 122.2-126.9 ppm from CF₃COOH);³⁰ this gives rise to singlets in the carbon spectrum in the range 109-111 ppm. In both experiments a noise modulation frequency of 2.7 kHz was employed which proved effective in removing the nondirectly bonded couplings ($J_{CCF} \approx 30 \text{ Hz}$).^{31,32}

A. Chemical Shift Assignments. The required decoupling procedures outlined above readily enabled the CF3 carbon to be assigned to the resonance at 118.1 ppm. If the CF₂ carbons are denoted, as $CF_2(i)$, i = 1-3, where the index *i* indicates the position of the CF_2 group from the end CF_3 , then assignment of $CF_2(3)$ to the resonance line at 111.7 ppm is consistent with the absence of a peak at this position in C_6F_{14} , the presence of a peak of unit intensity in C_7F_{16} , and the presence of a peak of double intensity in C_8F_{18} . Distinguishing the $CF_2(1)$ from $CF_2(2)$ resonances was aided by the ¹³C chemical shifts of the compound 1-hydroperfluoroheptane (Figure 2). The spectrum of this compound is readily analyzed through the intensities of resonance lines and doublet splittings due to C-H couplings. The HCF₂ carbon is a doublet $(J_{CH} = 193.6)$ Hz) centered at 108.5 ppm, $CF_2(1)$ is a doublet ($J_{CCH} = 6.9$ Hz) centered at 110.9 ppm, CF₂(2) is coincident with CF₂(3) at 111.8 ppm with a nonresolvable splitting ($J_{CCCH} < 1.0 \text{ Hz}$), and the remaining three carbons (the nonsubstituted end) have chemical shift values the same as the corresponding carbons in C_7F_{16} . The only set of assignments of CF_2 resonances in C_7F_{16} consistent with the ¹³C chemical shifts and C-H couplings in 1-hydroperfluoroheptane is $CF_2(1)$ at 109.4 ppm and $CF_2(2)$ at 111.1 ppm. This set of assignments is also consistent with the result that the ¹³C resonance at 109.4 ppm is a little broader (2-3 Hz) than that at 111.1 ppm (1.5-2.0 Hz) in all three perfluoroalkane spectra since this additional broadening presumably arises from some residual J_{CCF} coupling of $CF_2(1)$ to the CF_3 fluorines.

PPM ODWNFIELD FROM (EXTERNAL) TMS

Figure 2. Fluorine-decoupled 15.08 MHz ¹³C spectrum of 1-hydroperfluoro-n-heptane at 39 °C. The spectrum is the result of 64 scans at a recycle time (t) of 100 s using a $(90-\tau)$ pulse sequence. Chemical shift values and assignments are listed above the skeletal diagram and resonance lines, respectively. Appropriate C-H couplings are also indicated.

B. Spin-Lattice Relaxation Times. Relaxation experiments were performed using standard 180- τ -90 pulse sequences with a (5T₁ + τ) repetition rate. Free induction decays were accumulated for each value of τ in the relaxation experiment sequence (between 6 and 10 values of τ were employed). For each perfluoro compound, the CF₃ T_1 value and CF₂ T_1 values were determined in separate experiments owing to the problems associated with the fluorine noise decoupling discussed previously. T_1 values were calculated by least-squares analysis of integrated line intensities and were reproducible to $\pm 7\%$. The fact that there was incomplete decoupling of long-range (J_{CCF}) fluorine interactions for $CF_2(1)$ or CF_3 (depending upon experiment) did not affect the T_1 or NOE measurements since there was sufficient decoupling power at these nonmeasured sites to collapse the multiplets into a broad line of halfwidth 30-40 Hz which certainly implies that all fluorines were saturated.

References and Notes

- 1) NRC-NAS Postdoctoral Research Associate.
- T. W. Bates, "Fluoropolymers", L. A. Wall, Ed., Wiley-Interscience, (2)New York, N.Y., 1972, Chapter 14.
- (3) (a) T. W. Bates and W. H. Stockmayer, Macromolecules, 1, 12 (1968); (b) *ibid.*, 1, 17 (1968).

- (4) J. R. Lverla, Jr., H. M. McIntvre, and D. A. Torchia, Macromolecules, 7, 11 (1974).
- (5) Y. K. Levine, N. J. M. Birdsall, A. G. Lee, J. C. Metcalfe, P. Partington, and G. C. K. Roberts, J. Chem. Phys., 60, 2890 (1974), and references therein
- (6) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, London, 1972, Chapter 5.
- D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984 (1964)
- (8) A. L. Burlingame, R. V. McPherron, and D. M. Wilson, *Proc. Natl. Acad. Sci. U.S.A.*, **70**, 3419 (1973).
 (9) Reference 6, Chapter 4.
- J. Schaefer and D. F. S. Natusch, Macromolecules, 5, 416 (1972). (10)
- (11) D. Doddrell, V. Glushko, and A. Allerhand, J. Chem. Phys., 56, 3683 (1972)
- (12) T. M. Connor, *Trans. Faraday Soc.*, **60**, 1579 (1963).
 (13) Interior methylene carbons in this context refer to those carbons that are three to four carbons from the chain end. See ref 4 for further details.
- A value for C_8F_{18} was not calculated as no viscosity data were found in (14)the literature. Physical constants for C_6F_{14} and C_7F_{16} were taken from T. M. Reed III, "Flourine Chemistry", Vol. V, J. H. Simons, Ed., 1964, p 182; and M. Hudlicky, "Chemistry of Organic Fluorine Compounds", 182; and M. Hudlicky, "Chemistry of Organi-Macmillan, New York, N.Y. 1962, Chapter VIII.
- (15) V. A. Gierer and K. Wirtz, Z. Naturforsch., A, 8, 532 (1953). (16) Calculated from the relation $D = 1.15 \times 10^8 (T \rho/M_w \eta)$ where T is the Kelvin temperature, ρ the density, M_w the molecular weight, and η the absolute viscosity. See K. T. Gillen and J. H. Noggle, *J. Chem. Phys.*, 53, 801 (1970).
- D. E. Woessner, J. Chem. Phys., 37, 647 (1962).
- (18) M. J. Hannon, F. J. Boerio, and J. L. Koenig, J. Chem. Phys., 50, 2829 (1969).
- (19) Values in the literature for various CF₃ group bond lengths vary from 0.132 to 0.137 nm usually with a quoted error of ±0.002-0.003 nm. See H. J. M. Bowen et al., "Tables of Interatomic Distance and Configurations in Molecules and Ions", L. E. Sutton, et al., Ed., Burlington
- House, London, England, 1958, and ref 14. J. P. Lowe, *Prog. Phys. Org. Chem.*, **6**, 4, (1968). Reported barriers for the CF₃ group in various molecules are CF₃-CF₃ (3.9 kcal), CF₃CF₂H (3.5 kcal), CF₃CFH₂ (4.2 kcal), CF₃CH₃ (3.5 kcal). (21) Data taken from ref 20.
- D. E. Woessner, J. Chem. Phys., 36, 1 (1962).
- (23) D. E. Woessner, B. S. Snowden, Jr., and G. H. Meyer, J. Chem. Phys., 50, 719 (1969).
- (24) That is, a thermally activated rotation process is assumed so that an internal rotational correlation time, τ_i , could be computed from the gas phase value by $\tau_i = \frac{9}{6} (l_{CF_3}/kT)^{1/2} e^{V_i/RT}$ and then related to the internal rotation rates of the two models. See D. E. Woessner and B. S. Snow-den, Jr., Adv. Mol. Relaxation Processes, 3, 181 (1972).
- (25) Although the T_1 values computed using the stochastic diffusion process for CF3 internal reorientation are in better agreement with experimental \mathcal{T}_1 values, it should not be concluded that the stochastic process is more appropriate than the jump process; indeed, for internal rotation subject to a barrier large compared with kT, a jump process would seem the most appropriate.
- (26) Note also that a value of $r_{CF} = 0.136$ nm was used in the calculations; a r_{CF} = 0.134 nm would shorten the computed T₁ values.
 (27) G. E. Hawkes and R. J. Abraham, *Org. Magn. Reson.*, 6, 552 (1974).
 (28) T. C. Farrar, S. J. Druck, R. R. Shoup, and E. D. Becker, *J. Am. Chem.*
- Soc., 94, 699 (1972).
- (29) D. A. Torchia and J. R. Lyeria, Jr., Biopolymers, 13, 97 (1974).
- (30) F. A. Bovey, "NMR Spectroscopy", Academic Press, New York, N.Y., 1969, p 216.
- (31) Reference 6, p 363.
- (32) R. J. Abraham and P. Loftus, J. Chem. Soc., Chem. Commun., 454 (1973).